

1.19 Desired level of safety	Desired level of safety			00			
1.20 Fatig loaded spring	0 Fatig loaded spring						
1.21 Operational loading mode	Operational loading mode		Continuous loading				
1.22 Desired spring service life in tho	Desired spring service life in thousands of cycles		Infinite life				
1.23 Desired level of safety	Desired level of safety		1,3	30			
2.0 Options of spring materia) 🗹 Options of spring material.						
2.1 Production method :	Production method : Cold formed springs				•		
2.2 Spring material :	Hard drawn steel wire ASTM A	227			-		
2.3 Field of use of the selected r	naterial						
2.4 Suitability for fatigue load			Insuff	icient			
2.5 Relative strength			Med	ium			
2.6 Corrosion resistance			Insuff	icient			
2.7 Max. operational temperature			25	0	[°F]		
2.8 Delivered wire diameters			0,031 -	0,625	[in]		
2.9 Mechanical and physical pro	perties of the material		1				
2.10 Modulus of elasticity in tension		E ₂₀	287	00	[ksi]		
2.11 Modulus of elasticity at operatio	nal temperature	E	280	43	[ksi]		
2.12 Density		ρ	49	0	[lb/ft ³]		
2.13 Strength characteristics of t	he material						
2.14 Ultimate tensile strength		Su	17	5	[ksi]		
2.15 Permissible bending stress		σ_{A}	122,5		[ksi]		
2.16 Endurance limit in bending		σ_{e}	70	0	[ksi]		
2.17 Endurance limit by finite life		σ_{f}	7(0	[ksi]		
3.0 Spring design.							
3.1 Force arms				Deviat. [%]			
3.2 Arm of working force		R _f	1,500	10,0	[in]		
3.3 Arm of supporting force		R _s	1,500	10,0	[in]		
A Rf Rs	Rf Rs	C	Rf	D -(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(Rf		
3.4 Desired moments of the wor	rking cycle						
3.5 Maximum working moment		M ₈	20,0	10,0	[lb ft]		
3.6 Minimum working moment		M ₁	10,0	30,0	[lb ft]		
3.7 Desired angular deflections	of spring working leg		r				
3.8 • Leg angular deflection of full	3.8 • Leg angular deflection of fully loaded spring			10,0	[°]		
3.9 O Angle of working stroke	.9 O Angle of working stroke			50	[°]		
3.10 Leg angular deflection of preloa	ded spring	α_1	60	59	[°]		
CR8 CR8 F8 CCH		8	<u>Ол</u>	F 1 (<i>α</i> 1	De		

4.11	Spring index	С	7,	86	
4.12	Number of active coils	n	15	5,4	
4.13	Angle between legs in a free state	δ_0	14	1,7	[°]
4.14	Theoretic length of coiled section	L _K	5,0	266	[in]
4.15	Pitch between coils of free spring	t	0,3	065	[in]
4.16	Dimensions of spring legs				
4.17	Length of working / supporting leg	L _{R1} / L _{R2}	1,530	1,530	[in]
4.18	Bending radius on the working / supporting leg	r ₁ / r ₂	0,000	0,000	[in]
			C	D	
4.19	Parameters of preloaded spring				
4.20	Angular deflections of working leg / corrected	$lpha_{ m 1}$ / $lpha_{ m 1c}$	72,52	72,52	[°]
4.21	Angle between spring legs	δ_1	69	9,2	[°]
4.22	Spring stress	σ_1	46	,70	[ksi]
4.23	Parameters of fully loaded spring				
4.24	Angular deflections of working leg / corrected	α_{8} / α_{8c}	118,67	118,67	[°]
4.25	Angle between spring legs	δ_8	23	3,0	[°]
4.26	Angle of spring working stroke	α_{H}	46	,15	[°]
4.27	Spring stress	σ_{8}	76	,41	[ksi]
4.28	Max. outer / min. inner spring diameter	D _{e8} / D _{i8}	2,7141	2,0506	[in]
4.29	Maximum theoretic length of coiled section	L _{K8}	5,1276		[in]
4.30	Parameters of spring limit state				
4.31	Spring limit loading	F9 / M9	207,5	26,1	[lb] / [lb ft]
4.32	Angular deflections of working leg / corrected	α_9 / α_{9c}	172,20	172,20	[°]
4.33	Angle between spring legs	δ,	-30	0,5	[°]
4.34	Spring mechanical and physical properties				
4.35	Torque spring rate	k	1,	82	[lb in/°]
4.36	Spring deformation energy	W ₈	18,64		[ft lb]
4.37	Developed wire length	I	121,7		[in]
4.38	Spring weight	m	2,5	546	[lb]

	\checkmark Rs		-		
4.39	Spring strength check				1
4.40	Curvature correction factor	K _s	1,1048		
4.41	Corrected stress of fully loaded spring	$\sigma_{\scriptscriptstyle 8C}$	84,42		[ksi]
4.42	Permissible bending stress	σ_{A}	122,5		[ksi]
4.43	13 Level of safety			151	
4.49	Strength check of a spring exposed to fatigue loa	ding			1
4.50	σ_{80} Corrected stress in spring coils σ_{80}			,42	
4.51	1 Corrected stress on leg at the point of bending $$\sigma_{\rm 8r}$$,42	[ksi]
4.52	Max. fatigue strength for the given loading	σ_{max}	110,5		[ksi]
4.53	Level of safety		1,3	309	
5.0	Parameters of designed spring for specific wo	rking load.			
5.1	Spring parameters for the given working loading				_
5.2	Spring loading	M _x / F _x	15,00	119,2	[lb ft] / [lb]
5.3	Angular deflections of working leg / corrected	α_x / α_{xc}	98,89	98,89	[°]
5.4	Angle between spring legs	δ _x	42	2,8	[°]
5.5	Spring stress	σ,	63	,68	[ksi]
5.6	Spring parameters for the given angular leg defle	ction	<u> </u>	·	
5.7	Angular deflections of working leg	α	10	0.0	[°]
5.8	Angle between spring leas	δ	41	.7	[°]
5.9	Spring produced force / moment	F. / M.	120.5	15 17	[lb] / [lb ft]
5.10	Spring stress	σ.,	64	.39	[ksi]
		- *		· ·] []
	α_{x}				
-	F9 019	F9			
6.0	F9 0.9 C19 0 C19	F9 to fatigue loadi	C C		
<u>6.0</u>	F9 C19 C19 C19 C19 C19 C19 C19 C1	F9 to fatigue loadi	ing.		
6.0 6.1 6.2	F9 C09 C9 C9 C9 C9 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0	F9 to fatigue loadi	ing.		[ksi]
6.0 6.1 6.2 6.3	F9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C	F9 το fatigue loadi Κ σ ₁₀ σ ₁₀	0 ing. 1,1 51 84	048 ,59 .42	[ksi]
6.0 6.1 6.2 6.3 6 4	F9 C9 C9 C9 C9 C9 C9 C9 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0	F9 to fatigue loadi K σ _{1c} σ _{8c} S	ing.	048 ,59 ,42 75	[ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5	F9 C09 C19 C19 C19 C19 C19 C19 C19 C1	F9 to fatigue loadi Κ σ _{1c} σ _{8c} S _u	ing.	048 ,59 ,42 75 2 5	[ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.4	F9 Classifier of the second	F9 to fatigue loadi Κ σ _{1c} σ _{8c} S _u σ _A	ing.	048 ,59 ,42 75 2,5	[ksi] [ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.6	F9 Q9 F9 Q9 Check of loading capacity of a spring exposed Curvature correction factor Corrected stress of preloaded spring Corrected stress of fully loaded spring Ultimate tensile strength Permissible bending stress Endurance limit in bending Endurance limit by finite life	F_9 f_{0}	ing. 1,1 51 84 1' 12 7	048 ,59 ,42 75 2,5 70	(ksi) [ksi] [ksi] [ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.6	F9 C9 C General Control Contro	$\frac{F_9}{\sigma}$	ing. 1,1 51 84 17 7 7	048 ,59 ,42 75 2,5 0 0 0 0 0 5	(ksi) [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	F9 C9 C Generative C Check of loading capacity of a spring exposed Curvature correction factor Corrected stress of preloaded spring Corrected stress of fully loaded spring Ultimate tensile strength Permissible bending stress Endurance limit in bending Endurance limit by finite life Max. fatigue strength for the given loading	F_9 $to fatigue loading K$ σ_{1c} σ_{8c} S_u σ_A σ_e σ_f σ_{max}	ing. 1,1 51 84 1 ¹ 12 7 7	048 ,59 ,42 75 2,5 70 0 0 0,5	(ksi) [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	F9 C C C C C C C C C C C C C	F_9 f_{0}	ing. 1,1 51 84 1 ¹ 12 7 7 7 111 1,3	048 ,59 ,42 75 2,5 '0 0,5 309	(ksi) [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	F9 C9 • Check of loading capacity of a spring exposed Curvature correction factor Corrected stress of preloaded spring Corrected stress of fully loaded spring Ultimate tensile strength Permissible bending stress Endurance limit in bending Endurance limit by finite life Max. fatigue strength for the given loading Level of safety	F9 to fatigue loadi K σ _{1c} σ _{8c} S _u σ _A σ _e σ _f σ _{max}	ing. 1,1 51 84 1 ¹ 12 7 7 11 11	048 ,59 ,42 75 2,5 70 0,5 309	(ksi) [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi]
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	F9 C9 • Check of loading capacity of a spring exposed Curvature correction factor Corrected stress of preloaded spring Corrected stress of fully loaded spring Ultimate tensile strength Permissible bending stress Endurance limit in bending Endurance limit by finite life Max. fatigue strength for the given loading Level of safety	F9 to fatigue loadi K σ _{1c} σ _{8c} S _u σ _A σ _e σ _f σ _{max}	ing. 1,1 51 84 1 ¹ 12 7 7 111 1,3	048 ,59 ,42 75 2,5 '0 0,5 309	(ksi) [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi] [ksi]

		-		/	
		122,5			
		110,5			
		70			
		70		/ -	
				O _{8c}	_
				$\sigma_{ ext{lc}}$	
		Ľ			σ _{min}
	Supplem	onto contian			- 11111
7.0		ents section			
7.0					
7.1	Uploading of input data from main calculation				
7.2	Parameters of working cycle			1 - 1 - 2	
7.3	Arm of working / supporting force	R _f / R _s	1,5103	1,5103	[in]
7.5	Maximum working moment	M ₈	18,	.00	[lb ft]
7.4	Maximum working force	F ₈	143	3,0	[lb]
7.6	Angle of spring working stroke	$lpha_{H}$	46,	15	[°]
7.7	Minimum working loading	F ₁ / M ₁	87,4	11,0	[lb] / [lb ft]
7.8	Spring strength check				
7.9	Mean spring diameter	D	2,40	076	[in]
7.10	Recommended limits of wire diameter	d _{min} / d _{max}	0,2813	0,6019	[in]
7.11	Wire diameter / from table	d	0,3065	0,625 💌	[in]
7.12	Outer / inner spring diameter	D _o / D _i	2,7141	2,1011	[in]
7 13	Spring index	-e· -1	7	86	[]
7.13	Dermissible bending stress	с.	12	2.5	[ksi]
7.14	Corrected stress in spring coils	O _A	0/	A	[K3]
7.15	Dending reduce on the working (connecting lag	U _{8C}	0.0000	0.0000	[K3]
7.10	Bending radius on the working / supporting leg	$1_1 / 1_2$	0,0000	0,0000	[[[]]
7.17	Corrected stress on leg at the point of bending	O _{8r}	84	,4	נאטן
7.18	Level of safety		1,4	51	
7.19	Spring construction				
7.20	Recommended minimum number of active coils	n _{min}	5,9	99	
7.21	Number of active coils	n	15,	40	
7.22	Angle between legs in a free state	δ_0	14	1,7	[°]
7.23	Pitch between coils of free spring	t	0,3	065	[in]
7.24	Theoretic length of coiled section	L _K	5,02	266	[in]
7.25	Working angle of preloaded spring / corrected	α_{1} / α_{1c}	72,52	72,52	[°]
7.26	Working angle of fully loaded spring / corrected	α_8 / α_{8c}	118,67	118,67	[°]
7.27	Angle between legs for fully loaded spring	δ_8	23	,0	[°]
7.28	Max. outer / min. inner spring diameter	D _{e8} / D _{i8}	2,7141	2,0506	[in]
7.29	Maximum theoretic length of coiled section	Lvo	5.1	276	[in]
7 30	Transfer of solution into main calculation	-K8			
	Calculation of working forece of the aprice				
8.0	Calculation of working forces of the spring.				
8.1	uploading of input data from main calculation				
8.2	Parameters of working cycle			/7	[0]
8.3	Leg angular deflection of fully loaded spring	α_{8}	118	6,0/	
8.4	Leg angular deflection of preloaded spring	α_1	72,	.52	[°]
8.5	Angle of spring working stroke	α_{H}	46,	15	[°]
8.6	Spring dimensions				

8.7	Mean spring diameter D		<u>2,4</u> 076		[in]
8.8	Wire diameter / from table	d	0,3065	0,625 💌	[in]
8.9	Outer / inner spring diameter	D _e / D _i	2,7141 2,1011		[in]
8.10	Spring index	С	7,86		
8.11	Number of active coils n		15,	40	
8.12	2 Angle between legs in a free state δ_0		141	1,7	[°]
8.13	3 Pitch between coils of free spring t		0,30	065	[in]
8.14	Theoretic length of coiled section L_{K}		5,02	266	[in]
8.15	Dimensions of fully loaded spring				
8.16	Angle between spring legs	δ_8	23	,0	[°]
8.17	Max. outer / min. inner spring diameter	D _{e8} / D _{i8}	2,7141	2,0506	[in]
8.18	Maximum theoretic length of coiled section	L _{K8}	5,12	276	[in]
8.19	Spring loading				
8.20	Arm of working / supporting force	R _f / R _s	1,5103	1,5103	[in]
8.21	Minimum / maximum working moment	M ₁ / M ₈	11,00	18,00	[lb ft]
8.22	Minimum / maximum working force	F ₁ / F ₈	87,4	143,0	[lb]
8.23	Spring strength check				
8.24	Corrected stress in spring coils	$\sigma_{\scriptscriptstyle 8C}$	84	,4	[ksi]
8.25	Bending radius on the working / supporting leg	r ₁ / r ₂	0,0000	0,0000	[in]
8.26	Corrected stress on leg at the point of bending	$\sigma_{_{8r}}$	84	,4	[ksi]
8.27	Permissible bending stress	σ_{A}	122	2,5	[ksi]
8.28	Level of safety		1,4	51	
8.29	Transfer of solution into main calculation				
9.0	Calculation of working angles of the spring.				
0 1					
9.1	Uploading of input data from main calculation				
9.1 9.2	Spring loading				
9.1 9.2 9.3	Spring loading Arm of working / supporting force	R _f / R _s	1,5103	1,5103	[in]
9.1 9.2 9.3 9.4	Oploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment	R _f / R _s M ₁ / M ₈	1,5103 11,00	1,5103 18,00	[in] [lb ft]
9.1 9.2 9.3 9.4 9.5	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force	R _f / R _s M ₁ / M ₈ F ₁ / F ₈	1,5103 11,00 87,4	1,5103 18,00 143,0	[in] [Ib ft] [Ib]
9.1 9.2 9.3 9.4 9.5 9.6	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions	R _f / R _s M ₁ / M ₈ F ₁ / F ₈	1,5103 11,00 87,4	1,5103 18,00 143,0	[in] [lb ft] [lb]
9.1 9.2 9.3 9.4 9.5 9.6 9.7	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter	R _f / R _s M ₁ / M ₈ F ₁ / F ₈ D	1,5103 11,00 87,4 2,4	1,5103 18,00 143,0 076	[in] [Ib ft] [Ib] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Oploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table	R _f / R _s M ₁ / M ₈ F ₁ / F ₈ D d	1,5103 11,00 87,4 2,4(0,3065	1,5103 18,00 143,0 076 0,625 ▼	[in] [lb ft] [lb] [in] [in]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter	R _f / R _s M ₁ / M ₈ F ₁ / F ₈ D d D _e / D _i	1,5103 11,00 87,4 2,40 0,3065 2,7141	1,5103 18,00 143,0 076 0,625 ▼ 2,1011	[in] [Ib ft] [Ib] [in] [in] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index	R _f / R _s M ₁ / M ₈ F ₁ / F ₈ D d D _e / D _i c	1,5103 11,00 87,4 2,40 0,3065 2,7141 7,8	1,5103 18,00 143,0 076 0,625 ▼ 2,1011 86	[in] [lb ft] [lb] [in] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils	$\begin{array}{c} R_{\rm f} \ / \ R_{\rm s} \\ M_{\rm 1} \ / \ M_{\rm 8} \\ F_{\rm 1} \ / \ F_{\rm 8} \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,8 15,	$ \begin{array}{r} 1,5103 \\ 18,00 \\ 143,0 \\ \end{array} $ 076 0,625 2,1011 86 40	[in] [lb ft] [lb] [in] [in]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state	R _f / R _s M ₁ / M ₈ F ₁ / F ₈ D d D _e / D _i c n δ ₀	1,5103 11,00 87,4 2,40 0,3065 2,7141 7,8 15, 14	1,5103 18,00 143,0 076 0,625 ▼ 2,1011 86 40 1,7	[in] [lb ft] [lb] [in] [in]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 	Oploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring	$\begin{array}{c} R_{f} \ / \ R_{s} \\ M_{1} \ / \ M_{8} \\ F_{1} \ / \ F_{8} \end{array}$	1,5103 11,00 87,4 2,44 0,3065 2,7141 7,8 15, 147 0,30	$ \begin{array}{r} 1,5103 \\ 18,00 \\ 143,0 \\ \end{array} $ $ \begin{array}{r} 0,625 \\ \hline 2,1011 \\ 86 \\ 40 \\ 1,7 \\ 065 \\ \end{array} $	[in] [lb ft] [lb] [in] [in] ['n] [in]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 	Oploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section	$\begin{array}{c} R_{f} \ / \ R_{s} \\ M_{1} \ / \ M_{8} \\ F_{1} \ / \ F_{8} \end{array} \\ \hline D \\ d \\ D_{e} \ / \ D_{i} \\ c \\ n \\ \delta_{0} \\ t \\ L_{K} \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,8 15, 14 0,30 5,02	$ \begin{array}{c} 1,5103\\ 18,00\\ 143,0\\ \hline 0.0625 \\ 2,1011\\ \hline 86\\ 40\\ 1,7\\ \hline 065\\ \hline 266\\ \hline \end{array} $	[in] [Ib ft] [Ib] [in] [in] [in] [in]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle	$\begin{array}{c} R_{f} \ / \ R_{s} \\ M_{1} \ / \ M_{8} \\ F_{1} \ / \ F_{8} \end{array}$	1,5103 11,00 87,4 2,4 0,3065 2,7141 7,6 15, 14 ² 0,30 5,02	$ \begin{array}{r} 1,5103 \\ 18,00 \\ 143,0 \\ \end{array} $ $ \begin{array}{r} 2,1011 \\ 86 \\ 40 \\ 1,7 \\ 065 \\ 266 \\ \end{array} $	[in] [lb ft] [lb] [in] [in] [in] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected	$\begin{array}{c} R_{\rm f} \ / \ R_{\rm s} \\ M_{\rm 1} \ / \ M_{\rm 8} \\ F_{\rm 1} \ / \ F_{\rm 8} \end{array} \\ \hline D \\ d \\ D_{\rm e} \ / \ D_{\rm i} \\ c \\ n \\ \delta_{\rm 0} \\ t \\ L_{\rm K} \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,5 14 0,30 5,02 72,52	$ \begin{array}{c} 1,5103\\ 18,00\\ 143,0\\ 0.625 \\ \hline 2,1011\\ 86\\ 40\\ 1,7\\ 0.65\\ 266\\ \hline 72,52\\ \end{array} $	[in] [lb ft] [lb] [in] [in] [in] [in] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17	Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected	$\begin{array}{c} R_{\rm f} \ / \ R_{\rm s} \\ M_{\rm 1} \ / \ M_{\rm 8} \\ F_{\rm 1} \ / \ F_{\rm 8} \end{array}$	1,5103 11,00 87,4 2,40 0,3065 2,7141 7,4 15, 14 0,30 5,00 72,52 118,67	$ \begin{array}{c} 1,5103\\ 18,00\\ 143,0\\ 0,625 \\ 2,1011\\ 86\\ 40\\ 1,7\\ 065\\ 266\\ 72,52\\ 118,67\\ \end{array} $	[in] [lb ft] [lb] [in] [in] [in] [in] [in] [°]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18	Oploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle of spring working stroke	$\begin{array}{c} R_{\rm f} / R_{\rm s} \\ M_{\rm 1} / M_{\rm 8} \\ F_{\rm 1} / F_{\rm 8} \end{array} \\ \hline D \\ d \\ D_{\rm e} / D_{\rm i} \\ c \\ n \\ \delta_{\rm 0} \\ t \\ L_{\rm K} \end{array} \\ \hline \alpha_{\rm 1} / \alpha_{\rm 1c} \\ \alpha_{\rm 8} / \alpha_{\rm 8c} \\ \alpha_{\rm H} \end{array}$	1,5103 11,00 87,4 2,44 0,3065 2,7141 7,8 15, 14 0,30 5,02 72,52 118,67 46,	$ \begin{array}{c} 1,5103\\ 18,00\\ 143,0\\ 0,625 \\ \hline 2,1011\\ 86\\ 40\\ 1,7\\ 065\\ 266\\ \hline 72,52\\ 118,67\\ 15\\ \hline $	[in] [lb ft] [lb] [in] [in] [in] [in] [°] [°] [°]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 	Uploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle of spring working stroke Angle between legs for fully loaded spring	$\begin{array}{c} R_{\rm f} / R_{\rm s} \\ M_{1} / M_{8} \\ F_{1} / F_{8} \end{array} \\ \hline D \\ d \\ D_{\rm e} / D_{\rm i} \\ c \\ n \\ \delta_{0} \\ t \\ L_{\rm K} \end{array} \\ \hline \\ \begin{array}{c} \alpha_{1} \ / \ \alpha_{1c} \\ \alpha_{8} / \alpha_{8c} \\ \alpha_{H} \\ \delta_{8} \end{array} \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,8 15, 14 0,30 5,00 72,52 118,67 46, 23	$ \begin{array}{c} 1,5103 \\ 18,00 \\ 143,0 \\ \end{array} $ $ \begin{array}{c} 0,625 \\ \hline 2,1011 \\ 86 \\ 40 \\ 1,7 \\ 065 \\ 266 \\ \end{array} $ $ \begin{array}{c} 72,52 \\ 118,67 \\ 15 \\ ,0 \\ \end{array} $	[in] [lb ft] [lb] [in] [in] [in] [in] [in] [°] [°] [°]
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 	Uploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle between legs for fully loaded spring Max. outer / min. inner spring diameter	$\begin{array}{c} R_{\rm f} / R_{\rm s} \\ M_{\rm 1} / M_{\rm 8} \\ F_{\rm 1} / F_{\rm 8} \end{array} \\ \hline D \\ d \\ D_{\rm e} / D_{\rm i} \\ c \\ n \\ \delta_{\rm 0} \\ t \\ L_{\rm K} \end{array} \\ \hline \left(\begin{array}{c} \alpha_{\rm 1} \\ \alpha_{\rm 1} / \alpha_{\rm 1c} \\ \alpha_{\rm 8} / \alpha_{\rm 8c} \\ \alpha_{\rm H} \\ \delta_{\rm 8} \\ D_{\rm e8} / D_{\rm i8} \end{array} \right)$	1,5103 11,00 87,4 2,44 0,3065 2,7141 7,5 147 0,30 5,00 72,52 118,67 46, 23 2,7141	1,5103 18,00 143,0 0,625 ▼ 2,1011 86 40 1,7 065 266 72,52 118,67 15 ,0 2,0506	[in] [lb ft] [lb] [in] [in] [in] [in] [°] [°] [°] [°] [°] [°]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21	Uploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle between legs for fully loaded spring Max. outer / min. inner spring diameter Maximum theoretic length of coiled section	$\begin{array}{c} R_{\rm f} / R_{\rm s} \\ M_{\rm 1} / M_{\rm 8} \\ F_{\rm 1} / F_{\rm 8} \end{array} \\ \hline D \\ d \\ D_{\rm e} / D_{\rm i} \\ c \\ n \\ \delta_{\rm 0} \\ t \\ L_{\rm K} \end{array} \\ \hline \\ \left(\begin{array}{c} \alpha_{\rm n} \\ \alpha_{\rm 0} \\ \alpha_{\rm 0} \\ \alpha_{\rm 0} \\ \alpha_{\rm H} \\ \alpha_{\rm 8} / \alpha_{\rm 8c} \\ \alpha_{\rm H} \\ \delta_{\rm 8} \\ D_{\rm e8} / D_{\rm i8} \\ L_{\rm K8} \end{array} \right)$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,8 15, 14 0,30 5,02 72,52 118,67 46, 23 2,7141 5,12	$ \begin{array}{c} 1,5103\\ 18,00\\ 143,0\\ \hline 076\\ 0,625 \\ \hline 2,1011\\ \hline 86\\ 40\\ 1,7\\ \hline 065\\ 266\\ \hline 72,52\\ 118,67\\ 15\\ ,0\\ 2,0506\\ \hline 276\\ \hline \end{array} $	[in] [lb ft] [lb] [in] [in] [in] [in] [°] [°] [°] [°] [°] [°] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.16 9.17 9.18 9.19 9.20 9.21 9.22	Uploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle between legs for fully loaded spring Max. outer / min. inner spring diameter Maximum theoretic length of coiled section Spring strength check	$\begin{array}{c} R_{\rm f} \ / \ R_{\rm s} \\ M_1 \ / \ M_8 \\ F_1 \ / \ F_8 \\ \end{array} \\ \hline D \\ d \\ D_e \ / \ D_i \\ c \\ n \\ \delta_0 \\ t \\ L_K \\ \hline \alpha_1 \ / \ \alpha_{1c} \\ \alpha_8 \ / \ \alpha_{8c} \\ \alpha_{H} \\ \delta_8 \\ D_{e8} \ / \ D_{i8} \\ L_{K8} \\ \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,4 15, 14 0,30 5,00 72,52 118,67 72,52 118,67 46, 23 2,7141 5,12	1,5103 18,00 143,0 076 0,625 ▼ 2,1011 86 40 1,7 065 266 72,52 118,67 15 ,0 2,0506 276	[in] [lb ft] [lb] [in] [in] [in] [in] [°] [°] [°] [°] [°] [°] [in] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 9.22 9.23	Uploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle between legs for fully loaded spring Max. outer / min. inner spring diameter Maximum theoretic length of coiled section Spring strength check Corrected stress in spring coils	$\begin{array}{c} R_{\rm f} / R_{\rm s} \\ M_{\rm 1} / M_{\rm 8} \\ F_{\rm 1} / F_{\rm 8} \end{array} \\ \hline D \\ D \\ d \\ D_{\rm e} / D_{\rm i} \\ c \\ n \\ \delta_{\rm 0} \\ t \\ L_{\rm K} \end{array} \\ \hline \alpha_{\rm 1} / \alpha_{\rm 1c} \\ \alpha_{\rm 8} / \alpha_{\rm 8c} \\ \alpha_{\rm H} \\ \delta_{\rm 8} \\ D_{\rm e8} / D_{\rm i8} \\ L_{\rm K8} \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,8 15, 14 ² 0,30 5,02 72,52 118,67 46, 23 2,7141 5,12 5,12 84	1,5103 18,00 143,0 0,625 ▼ 2,1011 86 40 1,7 065 266 72,52 118,67 15 0,0 2,0506 276 2,0506	[in] [lb ft] [lb] [in] [in] [in] [in] [°] [°] [°] [°] [°] [°] [in] [in]
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 9.22 9.23 9.24	Uploading of input data from main calculation Spring loading Arm of working / supporting force Minimum / maximum working moment Minimum / maximum working force Spring dimensions Mean spring diameter Wire diameter / from table Outer / inner spring diameter Spring index Number of active coils Angle between legs in a free state Pitch between coils of free spring Theoretic length of coiled section Parameters of working cycle Working angle of preloaded spring / corrected Working angle of fully loaded spring / corrected Angle between legs for fully loaded spring Max. outer / min. inner spring diameter Maximum theoretic length of coiled section Spring strength check Corrected stress in spring coils Bending radius on the working / supporting leg	$\begin{array}{c} R_{\rm f} / R_{\rm s} \\ M_{\rm 1} / M_{\rm 8} \\ F_{\rm 1} / F_{\rm 8} \end{array} \\ \hline D \\ d \\ D_{\rm e} / D_{\rm i} \\ c \\ n \\ \delta_{\rm 0} \\ t \\ L_{\rm K} \end{array} \\ \hline \\ \alpha_{\rm 1} / \alpha_{\rm 1c} \\ \alpha_{\rm 8} / \alpha_{\rm 8c} \\ \alpha_{\rm H} \\ \delta_{\rm 8} \\ D_{\rm e8} / D_{\rm i8} \\ L_{\rm K8} \end{array} \\ \hline \\ \begin{array}{c} \sigma_{\rm 8C} \\ r_{\rm 1} / r_{\rm 2} \end{array}$	1,5103 11,00 87,4 2,4(0,3065 2,7141 7,8 15, 14 0,30 5,02 72,52 118,67 46, 23 2,7141 5,12 5,12 84 0,0000	1,5103 18,00 143,0 076 0,625 ▼ 2,1011 86 40 1,7 065 266 72,52 118,67 15 ,0 2,0506 276 276 ,4 0,0000	[in] [lb ft] [lb] [in] [in] [in] [in] [°] [°] [°] [°] [in] [in] [in]

9.26	Permissible bending stress		σ_{A}	122,5	[ksi	i]		
9.27	Level of safety			1,451				
9.28	Transfer of solution into main ca	Iculation						
10.0) 🗹 Graphical output, CAD systems							
10.1	2D drawing output to:	DXF File	-		0000	- 1}⊹_		
10.2	2D Drawing scale	Automatic	—		0000	-œ_		
10.3	Angle between spring legs		0,0			ALC: NO		
10.4	Text description (Informatio	n for BOM)				7400		
	Row 1 (BOM attribute 1)		Torsion spring		\checkmark			
	Row 2 (BOM attribute 2)		D=2,4076; d=	:0,3065; n=15,4				
	Row 3 (BOM attribute 3)		Hard drawn ste	eel wire ASTM A227				
10.5	Table of parameters							