


2.21	Para	ameters of	connection	chpobed t	o aynanne	(fatigue) lo	Jaumy			
2.22 Special modification of the connection								Standard de	esign of the cor	nection
2.23 Thread design								Cut thread		
2.24 Desired service life of the connection in cycles									•	
2.25 Desired reliability of the connection								99.5	•	[%]
2.26	Desi	red dynamic	2.	000						
3.0	☑ ` D	Design, din	nensions an	d material	of connec	ted parts.				
3.1	Desig	gn of conne	ected parts					A Plate	-	
3.2	Num	ber of clam	ped parts				i	3	•	
3.5	Tota	l height of t	the clamped	parts			L	4.	500	[in]
								1		
	А _Г		В		1			L	Λ	
				DA						
						-/////				
					4					
								L2	L3	
						-				
3.6		L	E	α	p _A	Material			AISI/S	SAE/ASTM 🔻
Pa	art 1	0.500	29000	8.9	91	Stainless steel	304			▼
Pa	art 2	3.000	16000	5.9	109	Gray cast iron	A48-35			•
Pa	art 3	1.000	29000	6.9	77	High-strength	structual steel	A1011 HSLAS (Grade 45 Class	2 🔻
4.0		Design of c	onnecting b	oolt.						
4.1	Bolt	type, mater	rial standard		Carbon and a	loy steel bolts	[SAE J429]			
4.2	Prel	iminary de	esign of mir	nimum thre	ad diamet	ers				1/1
			SAE 1	SAE 2	SAE 4	SAE 5	SAE 5.1			SAE 8.1
			0, (2 1	5/12 2	5/12 1	0, (2 0	JAL J.I	SAE 7	SAE 8	JAL 0.1
	МС		M14	M12	M8	M10	M10	M8	M8	M8
	MC MF		1		1	1	1			
			M14	M12	M8	M10	M10	M8	M8	M8
	MF		M14 M14	M12 M12	M8 M8	M10 M8	M10 M8	M8 M8	M8 M8	M8 M8
	MF UNC	:	M14 M14 9/16	M12 M12 7/16	M8 M8 3/8	M10 M8 3/8	M10 M8 3/8	M8 M8 5/16	M8 M8 5/16	M8 M8 5/16
4.3	MF UNC UNF UNEF	erial of the	M14 M14 9/16 1/2 1/2	M12 M12 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8	M10 M8 3/8 3/8	M8 M8 5/16 5/16	M8 M8 5/16 5/16	M8 M8 5/16 5/16
	MF UNC UNF UNEF Mate	erial of the	M14 M14 9/16 1/2 1/2	M12 M12 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8	M10 M8 3/8 3/8	M8 M8 5/16 5/16	M8 M8 5/16 5/16	M8 M8 5/16 5/16
4.4	MF UNC UNF UNEF <u>Mate</u> Strer Mode	erial of the ngth class (I ulus of elast	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16	M8 M8 5/16 5/16 5/16 30	M8 M8 5/16 5/16 5/16 ▼	M8 M8 5/16 5/16
4.4 4.5 4.6	MF UNC UNF UNEF <u>Mate</u> Strer Mode	erial of the ngth class (I ulus of elast nate tensile	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u	M8 M8 5/16 5/16 5/16 30	M8 M8 5/16 5/16 5/16 ▼ 0000 120	M8 M8 5/16 5/16 5/16 [ksi] [ksi]
4.4 4.5 4.6 4.7	MF UNC UNF UNEF Mate Stren Mode Ultim Yield	erial of the ngth class (I ulus of elast nate tensile I strength	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tension strength	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u S _y	M8 M8 5/16 5/16 5/16 30 1	M8 5/16 5/16 5/16 0000 .20 92	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [ksi]
4.4 4.5 4.6 4.7 4.8	MF UNC UNF UNEF Mate Stren Mode Ultim Yield Heat	erial of the ngth class (I ulus of elast nate tensile I strength : expansion	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tension strength	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 Ε S _u S _v α	M8 M8 5/16 5/16 5/16 30 1 1 0 0 0	M8 5/16 5/16 5/16 0000 120 92 5.2	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [ksi] [10 ⁻⁶ /°F]
4.4 4.5 4.6 4.7 4.8 4.9	MF UNC UNF UNEF Strer Mode Ultim Yield Heat	erial of the ngth class (I ulus of elast nate tensile I strength : expansion sity	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u S _y	M8 M8 5/16 5/16 5/16 30 1 1 0 0 0	M8 5/16 5/16 5/16 0000 .20 92	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [ksi]
4.4 4.5 4.6 4.7 4.8 4.9 4.11	MF UNC UNF UNEF Strer Modu Ultim Yield Heat Dens Thre	erial of the ngth class (I ulus of elast nate tensile I strength : expansion sity ead param	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 Ε S _u S _v α ρ	M8 M8 5/16 5/16 5/16 1 30	M8 5/16 5/16 5/16 0000 120 92 5.2 190	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [ksi] [10 ⁻⁶ /°F]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12	MF UNC UNF UNEF Strer Modu Ultim Yield Heat Dens Thre	erial of the ngth class (I ulus of elast nate tensile I strength : expansion sity ead param ad type	M14 M14 9/16 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 Ε S _u S _v α ρ	M8 M8 5/16 5/16 5/16 30 1 1 0 0 0	M8 5/16 5/16 5/16 0000 120 92 5.2 190	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [ksi] [10 ⁻⁶ /°F]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13	MF UNC UNF UNEF Modu Ultim Yield Heat Dens Thre Auto	erial of the ngth class (I ulus of elast nate tensile I strength expansion sity ead param ead type matic bolt of	M14 M14 9/16 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 Ε S _u S _v α ρ	M8 M8 5/16 5/16 5/16 3(1 1 	M8 5/16 5/16 5/16 5/16 0000 120 92 5.2 190 e series	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [ksi] [10 ⁻⁶ /°F]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14	MF UNC UNF UNEF Modu Ultim Yield Heat Dens Thre Auto Thre	erial of the ngth class (l ulus of elast nate tensile strength expansion sity ead param ad type matic bolt o ad size	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 Ε S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 3(1 1 2 thread - Coars 1/2	M8 5/16 5/16 5/16 5/16 0000 120 92 5.2 190 we series ✓	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [10 ⁻⁶ /°F] [lb/ft ³]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15	MF UNC UNF UNEF Modu Ultim Yield Heat Dens Thre Auto Thre Basic	erial of the ngth class (I ulus of elast nate tensile I strength expansion sity ead param ad type matic bolt of ad size c major diar	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 1 30 1 1 2 thread - Coars	M8 5/16 5/16 5/16 5/16 92 5.2 190 e series ▼ 50000	M8 M8 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16	MF UNC UNF UNEF Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre	erial of the ngth class (i ulus of elast nate tensile I strength : expansion sity ead param ad type matic bolt o ad size c major diar ad pitch	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 1 30 1 1 4 thread - Coars 1/2 1/2 0.1 0.1	M8 5/16 5/16 5/16 5/16 0000 .20 92 5.2 190	M8 M8 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17	MF UNC UNF UNEF Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Mino	erial of the ngth class (i ulus of elast nate tensile I strength expansion sity ead param watic bolt of ad size c major diar ead pitch or diameter	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 M12 7/16 7/16 7/16 7/16	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 3(1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16	M8 5/16 5/16 5/16 5/16 0000 20 92 5.2 190 e series ▼ 5000 0769 4001	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18	MF UNC UNF UNEF Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Mino Pitch	erial of the ngth class (i ulus of elast nate tensile strength expansion sity ead param ad type matic bolt of ad size c major diar ad pitch or diameter	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters design meter	M12 7/16 7/16 7/16 7/16 he bolt	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 3(1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16	M8 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5000 00000	M8 M8 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19	MF UNC UNF UNEF Mat Strer Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Basic Thre Mino Pitch	erial of the ngth class (I ulus of elast nate tensile strength expansion sity ead param ad type matic bolt of ad size c major diar ad pitch or diameter ign and ge	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters	M12 7/16 7/16 7/16 7/16 he bolt	M8 M8 3/8 5/16	M10 M8 3/8 5/16 SAE 5	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 1 1 2 1/2 1/2 1/2 0.1 0.1 0.2	M8 5/16 5/16 5/16 5/16 0000 20 92 5.2 190 e series ▼ 5000 0769 4001	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20	MF UNC UNF UNEF Mate Strer Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Basic Thre Basic	erial of the ngth class (I ulus of elast nate tensile strength expansion sity ead param ad type matic bolt of ad size c major diar ead pitch or diameter diameter ign and ge type	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters design meter	M12 7/16 7/16 7/16 7/16 he bolt	M8 M8 3/8 5/16	M10 M8 3/8 5/16 SAE 5	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch	M8 M8 5/16 5/16 5/16 1 1 2 1/2 1/2 1/2 0.1 0.1 0.2	M8 5/16 5/16 5/16 5/16 0000 20 92 5.2 190 e series ▼ 5000 0769 4001	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21	MF UNC UNF Strer Modu Ultim Yield Heat Dens Thre Basic Thre Basic Thre Basic Thre Basic Thre Basic Thre Desig	erial of the ngth class (i ulus of elast nate tensile I strength expansion sity ead param watic bolt of ad type matic bolt of ad size c major diar ad pitch or diameter ign and ge type gn of the bo	M14 M14 9/16 1/2 e bolt Material) of t ticity in tensio strength coefficient eters design meter	M12 7/16 7/16 7/16 7/16 he bolt	M8 M8 3/8 5/16	M10 M8 3/8 3/8 5/16 SAE 5 SAE 5	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch d p d _r d _m	M8 M8 5/16 5/16 5/16 1 1 2 1/2 1/2 1/2 0.1 0.1 0.2	M8 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 \$\$000 120 92 5.2 190 \$\$\$000 \$\$\$000 \$\$\$0769 4001 4500	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22	MF UNC UNF UNEF Mate Strer Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Basic Thre Basic Thre Basic Thre Desig	erial of the ngth class (i ulus of elast nate tensile d strength ead param ad type matic bolt of ad size c major diar ad pitch or diameter diameter ign and ge type gn of the bo	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient design meter cometry of t	M12 7/16 7/16 7/16 he bolt on	M8 M8 3/8 5/16 5/16	M10 M8 3/8 3/8 5/16 SAE 5 SAE 5	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch d p d _r d _m	M8 M8 5/16 5/16 5/16 1 1 2 1/2 1/2 1/2 0.1 0.1 0.2	M8 M8 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 90 20000 120 92 5.2 190 490 100 100 100 100 100 100	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23	MF UNC UNF UNEF Mat Strer Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Basic Thre Basic Thre Basic Thre Desig Desig	erial of the ngth class (i ulus of elast nate tensile strength expansion sity ead param ad type matic bolt of ad size c major diar ad pitch or diameter ign and ge type gn of the bo iber of bolt si	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient eters design meter cometry of t	M12 7/16 7/16 7/16 he bolt on he bolt on	M8 M8 3/8 5/16 5/16	M10 M8 3/8 3/8 5/16 SAE 5 SAE 5	M10 M8 3/8 3/8 5/16 E S _u S _v α ρ Unified inch d p d _r d _m	M8 M8 5/16 5/16 5/16 10 10 10 10 10 10 10 10 10 10	M8 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 \$\$	M8 M8 5/16 5/16 (ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in] [in]
4.4 4.5 4.6 4.7 4.8 4.9 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22	MF UNC UNF UNEF Mat Strer Modu Ultim Yield Heat Dens Thre Auto Thre Basic Thre Basic Thre Basic Thre Basic Thre Desig Desig	erial of the ngth class (i ulus of elast nate tensile strength expansion sity ead param ad type matic bolt of ad size c major diar ad pitch or diameter ign and ge type gn of the bo iber of bolt si	M14 M14 9/16 1/2 1/2 e bolt Material) of t ticity in tensio strength coefficient design meter cometry of t	M12 7/16 7/16 7/16 he bolt on he bolt on	M8 M8 3/8 5/16 5/16	M10 M8 3/8 3/8 5/16 SAE 5 SAE 5	M10 M8 3/8 3/8 5/16 E Su Sv Q Unified inch d p dr, dr, dm h-bolt with head ead i	M8 M8 5/16 5/16 5/16 10 10 10 10 10 10 10 10 10 10	M8 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 92 5.2 190 e series ▼ 5000 0769 4001 4500	M8 M8 5/16 5/16 5/16 [ksi] [ksi] [l0 ⁻⁶ /°F] [lb/ft ³] [in] [in]

6.0	Strength checks of statically loaded bolt connections.			
6.1	Strength check of connections in the working state			
	Internal axis force in the bolt	F ₁	3001.00	[lb]
6.3	Tensile stress in bolt core from the axis force	σ	21.15	[ksi]
6.4	Torsional stress in bolt core from tightening moment	τ	10.87	[ksi]
6.5	Additional bending stress	$\sigma_{\rm b}$	0.00	[ksi]
6.6	Resulting reduced stress in the bolt core	σ_{red}	23.15	[ksi]
6.7	Yield point of the bolt material	Sy	92	[ksi]
6.8	Safety at yield point	υ n	3.97	[(3]]
	Strength check of connections in the assembly state		5.57	
	Assembly preload of the joint	F ₀	3535.00	[lb]
	Tensile stress in bolt core from the assembly preload	σ	24.91	[ksi]
6.12		σ_{red}	31.23	[ksi]
	Allowable stress (90% Sy)	σ_{red}	83	[ksi]
	Check of pressure in seating face of the bolt head	U _A		
	Pressure in the bolt head (nut) seating face		12.90	[ksi]
6.16	Permitted pressure in the marginal clamped part	p	77	[ksi]
	Strength check of connections for maximum prestressing	PA		[K3I]
		F ₀ ' _{max}	3535.00	[lb]
6.18	Maximum operating prestressing of the joint Maximum internal axis force in the bolt		3650.08	[lb] [lb]
	Tensile stress in bolt core from the maximum axis force	F _{1max}	25.72	
		σ_{max}		[ksi]
6.21		σ_{red}	27.39	[ksi]
6.22		p _{max}	15.69	[ksi]
7.0	Strength checks of dynamically loaded bolt connections.			
7.1	Strength check in the thread core			
7.2	·	Fm	2943.46	[lb]
7.3	Amplitude of the axis force of the cycle	Fa	57.54	[lb]
7.4	Medium cycle stress in the thread core	σ_{m}	20.74	[ksi]
7.5	Cycle stress amplitude in the thread core	σ_{a}	0.41	[ksi]
7.6	Basic fatigue limit / for N cycles	σ_{e}' / N	54 1.0E+06	[ksi]
7.7	Fatigue limit in tension with a required service life	σ_{f}	54	[ksi]
7.8	Corrected fatigue limit in tension of the given bolt	σ_{f}		🗹 [ksi]
7.9	Max. fatigue strength of the bolt for the given course of loading	σ_{A}	7.02	[ksi]
7.10	Dynamic safety in tension	n _σ	17.32	
	Strength check in the reduced shank			
	Medium cycle stress in the reduced shank	σ_{m}	14.99	[ksi]
7.13	Cycle stress amplitude in the reduced shank	σ_{a}	0.29	[ksi]
7.14	Corrected fatigue limit in tension of the given bolt	σ_{f}	54	☑ [ksi]
7.15	Max. fatigue strength of the bolt for the given course of loading	σ_{A}	32.68	[ksi]
7.16	Dynamic safety in tension	n _σ		
	Supplements section			
8.0	Assembly parameters of the connection.			
8.1	Assembly preload of the joint			
8.2	Minimum assembly preload	F_{0min}	3535.0	[lb] 🗹
8.3	Tightening factor	α_{A}	1.70	
8.4	Maximum assembly preload	F_{0max}	6009.5	[lb]
8.5	Tightening torque			
8.6	Friction coefficient in threads (min/max)		0.120 0.180	
8.7	Friction coefficient in seating face of the head (nut) of the bolt (min/	/max)	0.100 0.200	
8.8	Minimum possible tightening torque	M _{min}	20.96	[lb ft]
8.9	Maximum possible tightening torque	M _{max}	58.38	[lb ft]
8.10	Strength check of connections in the assembly state			
8.11	Tensile stress in bolt core from the assembly preload	σ_{max}	42.35	[ksi]
8.12	Torsional stress in bolt core from tightening moment	τ_{max}	21.23	[ksi]
8.13	Resulting reduced stress in the bolt core	σ_{red}	56.09	[ksi]
	Allowable stress (90% Sy)	σ_{A}	83	[ksi]
		~A		· · ·

8.15 Strength check of connections in the working state8.15 Operating prestressing of the joint $F_0'_{max}$ 5360.48.16 Operating prestressing of the joint F_{1max} 5475.58.17 Internal axis force in the bolt F_{1max} 5475.58.18 Tensile stress in bolt core from the axis force σ_{max} 38.598.19 Resulting reduced stress in the bolt core σ_{red} 42.748.20 Yield point of the bolt material S_y 928.21 Safety at yield pointn2.158.22 Check of pressure in seating face of the bolt head σ_{red}	[lb] [lb] [ksi] [ksi]
8.17Internal axis force in the bolt F_{1max} 5475.58.18Tensile stress in bolt core from the axis force σ_{max} 38.598.19Resulting reduced stress in the bolt core σ_{red} 42.748.20Yield point of the bolt material S_y 928.21Safety at yield pointn2.15	[lb] [ksi] [ksi]
8.18Tensile stress in bolt core from the axis force σ_{max} 38.598.19Resulting reduced stress in the bolt core σ_{red} 42.748.20Yield point of the bolt material S_y 928.21Safety at yield pointn2.15	[ksi] [ksi]
8.19Resulting reduced stress in the bolt core σ_{red} 42.748.20Yield point of the bolt material S_y 928.21Safety at yield pointn2.15	[ksi]
8.20 Yield point of the bolt materialSy928.21 Safety at yield pointn2.15	
8.21 Safety at yield point n 2.15	
	[ksi]
8.22 Check of pressure in seating face of the bolt head	
0.22 Decrement in the helt hand (as t) continue from	
8.23 Pressure in the bolt head (nut) seating face p_{max} 23.53	[ksi]
8.24 Permitted pressure in the marginal clamped part p_A 77	[ksi]
8.25 Fatigue check of the connection	
8.26 Medium cycle stress in the thread core σ_m 38.18	[ksi]
8.27 Cycle stress amplitude in the thread core $\sigma_a = 0.41$	[ksi]
8.28 Max. fatigue strength of the bolt for the given course of loading σ_A 5.80	[ksi]
8.29 Dynamic safety in tension n_{σ} 14.29	
9.0 🗹 Parameters of the coupling at specific working temperature.	
9.1 Temperature of the connection Different temperatures at the	connection 🛛
9.2 Assembly temperatureT068.0[° F]	
9.3 Operational temperature of the bolt T _b 500.0 [° F]	
9.4 Operational temperature of the clamped parts T _m 500.0 [° F]	
9.5 Material of the bolt	
9.6 Modulus of elasticity in tension E_{20} 30000 E_{T} 27700	[ksi]
9.7 Heat expansion coefficient α_{20-100} 6.2 α_{T0-T} 7.1	[10 ⁻⁶ /°F]
9.8 Yield strength S_{y20} 92 S_{yT} 72	[ksi]
9.9 Material of connected parts. E_{20} E_{T} α_{20-100}	
9.10 Stainless steel 304 29000 26600 8.9	9.3
9.10 Stanless steel 504 23000 20000 6.9 9.11 Gray cast iron A48-35 16000 15000 5.9	6.8
9.11 Gray Cast non A48-55 10000 15000 5.9 9.12 High-strength structual steel A1011 HSLAS Grade 45 Class 2 29000 26900 6.9	7.8
	7.0
9.15 Parameters of the connection	
9.16 Assembly preload of the joint F_0 3535.0	[lb] ☑
9.17 Operating prestressing of the joint at the temperature T0 F_0' 2885.9	[lb]
9.18 <u>Change of prestresssing due to heating of the connection</u>	
9.19 - due to thermal expansion ΔF_{0Ta} 333.1	[lb]
9.20 - due to change in stiffness ΔF_{OTc} -219.4	[lb]
9.21 Prestressing of the joint at the operating temperature F_{0T} 2999.6	[lb]
9.22 Residual prestressing of clamped parts of the connection F _{2T} <u>1114.1</u>	[lb]
9.23 Coefficient of tightness (prestressing) of the connection q_{aT} 0.557	_
9.24 Safety against side shift q _{rT} 0.000	
9.25 Resulting internal axis force in the bolt F_{1T} 3114.1	[lb]
9.26 Tensile stress in bolt core from the axis force σ_{T} 21.9	[ksi]
9.27 Resulting reduced stress in the bolt core σ_{redT} 23.9	[ksi]
9.28 Safety at yield point n _T 3.02	
4000 ₇	
3500	
2000	
3000	
2500 -	
2500 -	
2500 - 2000 -	
2000 -	
2000 - 1500 -	
2000 -	
2000 - 1500 -	

